Table I. Molecular Energies and Mulliken Population Analysis for CH2==NH and Fluorine Derivatives

	Molecule				Gross charges						Overlap population			
	R1	R2	R3	Energy	C	N	R1	R2	R3	C=N	N—R1	C-R2	C-R3	
2	Н	Н	Н	-92.82303	-0.009	-0.276	0.151	0.060	0.073	1.040	0.622	0.770	0.777	
3	F	Н	Н	-190.26001	-0.034	-0.081	-0.069	0.088	0.096	0.979	0.345	0.781	0.767	
4	Н	F	Н	-190.29267	0.195	-0.308	0.159	-0.133	0.087	1.020	0.622	0.453	0.756	
5	Н	Н	F	-190.28952	0.201	-0.310	0.161	0.070	-0.122	1.009	0.631	0.744	0.465	
6	Н	F	F	-287.76289	0.399	-0.333	0.170	-0.126	-0.110	0.979	0.631	0.438	0.456	
7	F	Н	F	-287.71884	0.182	-0.115	-0.061	0.096	-0.102	0.940	0.345	0.743	0.466	
8	F	F	н	-287.72019	0.176	-0.114	-0.060	-0.107	0.106	0.940	0.342	0.456	0.760	
9	F	F	F	-385.18510	0.389	-0.140	-0.053	-0.102	-0.094	0.896	0.340	0.443	0.457	

Table II. STO-3G Optimized Geometries for CH2==NH and Fluorine Derivatives

	Mole	ecule		Bond lengths, Å				Bond angles, deg			
	R1	R2	R3	C==N	NR1	C—R2	C—R3	R1—N—C	R2C—N	R3	
2	Н	Н	H	1.274	1.049	1.091	1.089	109	125	119	
3	F	н	Н	1.287	1.377	1.089	1.085	110	124	118	
4	Н	F	Н	1.272	1.048	1.351	1.096	108	125	121	
5	Н	н	F	1.274	1.045	1.101	1.346	108	127	120	
6	н	F	F	1.275	1.045	1.353	1.341	107	126	123	
7	F	Н	F	1.291	1.378	1.098	1.344	109	125	120	
8	F	F	н	1.291	1.379	1.347	1.094	110	124	119	
9	F	F	F	1.296	1.381	1.348	1.340	109	126	122	

References and Notes

- G. T. Armstrong and S. Marantz, J. Chem. Phys., 38, 169 (1962); see also J. Binenboym, A. Burcat, A. Lifshitz, and J. Shamir, J. Am. Chem. Soc., 88, 5039 (1966).
 H. G. Viehe, Chem. Ber., 93, 1697 (1960); see also W. A. Sheppard and
- (2) H. G. Vlehe, *Chem. Ber.*, **93**, 1697 (1960); see also W. A. Sheppard and C. M. Shartz, "Organic Fluorine Chemistry", W. A. Benjamin, New York, N.Y., 1969.
- (3) (a) S. P. Markov, A. Ya. Yakubovich, A. S. Filatov, M. A. Englin, and T. Ya. Nikiforova, *Zh. Obshch. Khim.*, 38, 709 (1968); (b) M. A. Englin, I. V. Ermakova, and V. I. Yakutin, *Ibid.*, 39, 1134 (1969).
- (4) M. E. Jacox and D. E. Milligan, J. Chem. Phys., 48, 4040 (1968).
- (5) H. Hagemann, D. Arit, and I. Ugi, Angew. Chem., Int. Ed. Engl., 8, 606 (1969).
- (6) V. A. Ginsburg and K. N. Smirnov, Zh. Obsch. Khim., 37, 1413 (1967);
 39, 1134, 1331 (1969).
- (7) D. H. Dybrig, Inorg. Chem., 5, 1795 (1966).

- (8) E. Kuchle, B. Anders, E. Klauke, H. Tarnow, and G. Zumach, Angew. Chem., Int. Ed. Engl., 8, 20 (1969).
- (9) (a) M. S. Gordon and J. A. Pople, J. Chem. Phys., 49, 4643 (1968); (b)
 G. Ostorogovich, F. Kerek, and Z. Simon, J. Chem. Soc. B, 541 (1971).
- (10) R. Ditchfield, J. E. Del Bene, and J. A. Pople, J. Am. Chem. Soc., 94, 703 (1972).
- (11) For basis sets, see J. A. Pople, Acc. Chem. Res., 3, 217 (1970); W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 51, 2657 (1969). The program used with was GAUSSIAN-70, available as QCPE 236 from Quantum Chemistry Program Exchange, Chemistry Department, Indiana University, Bioomington, Ind.
- (12) J. M. Howell and L. K. Kirshenbaum, J. Am. Chem. Soc., preceding paper in this issue.
- (13) L. Radom, W. J. Hehre, and J. A. Pople, J. Am. Chem. Soc., 94, 2371 (1972).
- (14) L. C. Snyder and H. Basch, "Molecular Wave Functions and Properties", Wiley, New York, N.Y., 1972.
- (15) W. J. Hehre and J. A. Pople, J. Am. Chem. Soc., 92, 2191 (1970).

Ionization Potentials of π Molecular Hydrocarbons^{1a}

William C. Herndon*1b

Contribution from the Department of Chemistry, The University of Texas at El Paso, El Paso, Texas 79968. Received May 5, 1975

Abstract: Adiabatic ionization potentials for cata- and peri-condensed benzenoid hydrocarbons, benzenoid systems with essential single bonds, nonalternant aromatic compounds, and open-chain and cyclic olefins are correlated with an empirical resonance theory that only requires enumeration of structures. For 29 compounds, the average deviation of calculated and experimental ionization potentials is ± 0.16 eV and the correlation coefficient is 0.995. For 11 additional large aromatic hydrocarbons, not included in the original correlation, the deviation is ± 0.08 eV. Predicted ionization potentials for several interesting nonbenzenoid compounds are listed.

A simple structure-resonance theory with a basis of Kekulé structures has been demonstrated to correlate and predict resonance energies,² heats of formation,³ bond orders and bond lengths,⁴ NMR coupling constants,⁴ and several

* Address correspondence to the author at Chemistry Section, National Science Foundation, Washington, D.C. 20550.

types of reactivity^{5,6} with high precision. The resonance theory calculations require no more than an enumeration of structures⁷ since it has also been shown that an algorithm, logarithm of the Kekulé corrected structure count (CSC),^{6,8} gives an excellent approximation to the groundstate eigenvalue of the structure-function Hamiltonian matrix. The structures are enumerated by graph theoretical

887

888

					IP, eV		
Compd	CSC(R)	RE(R), eV	$CSC(R^{+})$	$RE(R.^+)$, eV	Calcd.	Exptl.a	
1 Benzene	2	0.821	18	3.018	9.08	9.23	
2 Naphthalene	3	1.302	62	4.309	8.27	8.13	
3 Anthracene	4	1.643	152	5.245	7.67	7.43	
4 Tetracene	5	1.907	310	5.989	7.20	7.01	
5 Pentacene	6	2.123	554	6.595	6.81	6.69	
6 Phenanthrene	5	1.907	164	5.324	7.86	7.80	
7 Triphenylene	9	2.604	396	6.245	7.64	7.86	
8 Benzanthracene	7	2.306	350	6.116	7.47	7.45	
9 Benzphenanthrene	8	2.464	376	6.190	7.55	7.62	
10 Chrysene	8	2.464	378	6.196	7.54	7.61	
11 Pyrene	6	2.123	254	5.781	7.62	7.41	
12 Coronene	20	3.550	1488	7.627	7.20	7.34	
13 Perylene	9	2.604	536	6.561	7.32	7.00	
14 Benzo[1,12] perylene	14	3.127	920	7.125	7.28	7.19	
15 Benzo[a] pyrene	9	2.604	545	6.578	7.30	7.12	
16 Ovalene	50	4.636	5890	9.063	6.85	6.86	
17 Biphenyl	4	1.643	90	4.698	8.23	8.21	
18 Styrene	2	0.821	28	3.479	8.62	8.40	
19 1,1-Diphenylethylene	4	1.643	104	4.849	8.07	8.00	
20 1,2-Diphenylethylene	4	1.643	122	5.015	7.90	7.75	
21 Azulene	2	0.340 ^b	62	4.309	7.31	7.42	
22 Acenaphthylene	3	1.302	112	4.926	7.65	8.02	
23 Fluoranthene	6	2.123	274	5.860	7.54	7.80	
24 Fulvene	1	0.0	16	2.895	8.38	8.55	
25 Biphenylene	3	1.302	96	4.765	7.81	7.62	
26 Ethylene	1	0.0	2	0.724	10.55	10.51	
27 Butadiene	1	0.0	6	1.871	9.41	9.11	
28 Cyclooctatetraene	1	0.0	32	3.618	7.66	8.00	
29 3,4-Dimethylenecyclobutene	1	0.0	10	2.404	8.87	8.80	
30 Hexacene	7	2.306	976	7.186	6.40	6.44	
31 Benzpentacene	11	2.842	1131	7.340	6.78	6.72	
32 Picene	13	3.039	804	6.984	7.33	7.54	
33 Dibenzo [g,p]chrysene	24	3.766	1764	7.804	7.24	7.18	
34 Benzo[e] pyrene	11	2.842	598	6.675	7.44	7.43	
35 Anthanthrene	10	2.729	764	6.931	7.08	6.92	
36 Peropyrene	18	3.425	1738	7.789	6.91	6.77	
37 Dibenzo[e,l] pyrene	20	3.550	1320	7.502	7.33	7.40	
38 Pyreno [4,5-e] pyrene	35	4.213	3384	8.484	7.01	6.90	
39 9,10-Diphenylanthracene	16	3.286	1352	7.527	7.04	7.10	
40 Acepleiadylene	4	1.643	276	5.868	7.05	7.13	
41 Cyclobutadiene	0	-0.65^{b}	8	2.171	8.46		
42 Benzocyclobutadiene	1	0.0	28	3.479	7.80		
43 Methylenecyclopropene	1	0.0	8	2.171	9.11		
44 Pentalene	0	-0.26^{b}	40	3.851	7.17		
45 Cycloocta[def] biphenylene	2	0.821	152	5.245	6.85		

^aExperimental values from ref 10-14. ^bResonance theory calculations, ref 2b.

methods, and calculated resonance energies are the same as those obtained from highly parameterized SCF-LCAO-MO calculations.⁹

In this paper, the structure-resonance theory will be used to calculate the resonance energies of even-membered radical cations, and the results will be used to correlate ionization potentials.

Procedures and Results

Photoelectron spectroscopy provides experimental vertical and adiabatic ionization potentials (IP) that have been used to confirm results of MO calculations for unsaturated and aromatic hydrocarbons.¹⁰⁻¹⁴ The measured adiabatic values can also be used to test the resonance theory on the following basis. The lowest adiabatic IP is the difference in energy between neutral molecule and radical cation, both in their most stable electronic, vibrational, and rotational state. Assuming there is no gross molecular structural change in the underlying σ framework upon ionization, the ionization energy should be linearly related to the difference in π -resonance stabilization energies of the neutral compound and the cation, eq 1, where A is a constant and all energies are taken with positive sign. The interpretation of A is significant, as will be discussed later.

$$IP = A + RE(R) - RE(R \cdot^{+})$$
(1)

The resonance energies of the neutral systems can be calculated by the algorithm given in eq $2,^8$ or by resonance theory² or SCF-MO⁹ calculations. The resonance energies of cations and anions are similarly related to logarithmic functions of numbers of structures.^{6.15} Accordingly, the experimental IP were fitted to eq 1 by regression methods with the results given by eq 3, and tabulated in Table I.

$$RE(R)(eV) = 1.185 \ln [CSC(R)]$$
 (2)

$$IP(eV) = 11.277 + RE(R) - 1.044 \ln [CSC(R \cdot +)]$$
(3)

Compounds 1 through 29 in the table were used to establish the linear relationship which gives an average deviation of calculated and experimental IP of ± 0.16 eV (correlation coefficient 0.995). The correlated compounds include catacondensed (compounds 1-10) and peri-condensed (11-16) benzenoid hydrocarbons, benzenoid systems with essential single bonds (17-20), nonbenzenoid and nonalternant hy-

drocarbons (21-25), and open-chair or cyclic olefins (26-29). Hückel MO calculations cannot correlate IP data for such a wide variety of molecular types. SCF calculations¹⁰⁻¹³ and modified Hückel procedures^{13c} are as effective as the resonance theory but require the use of digital computers and considerably more time.

IP's of compounds 30-40, not included in the linear correlation data set, have recently been measured.^{12b} Using the parameters given in eq 3, the calculated IP's differ from the experimental values by an average ± 0.08 eV. Table I also contains predicted ionization energies for several interesting nonbenzenoid and antiaromatic compounds. The calculated IP for cyclobutadiene is very close to the value of 8.50 eV estimated from the photoelectron spectrum of cyclobutadiene iron tricarbonyl,¹⁶ or 8.20 eV taken from the appearance potential of a mass 52 peak found during flash vacuum pyrolysis of photo- α -pyrone,¹⁷ eq 4. IP's for benzocyclobu-

$$\square O \longrightarrow \square (mass 52)$$
(4)

tadiene, methylenecyclopropene, and pentalene are not available.

Cycloocta[def]biphenylene, 45, has been synthesized¹⁸ but the IP has not been measured. A value of 7.25 has been

estimated for the vertical IP from the frequency of the charge-transfer band with tetracyanoethylene.¹⁹ The resonance energy of 45 from the CSC algorithm, 0.82 eV, is not as high as the calculated SCF value, 1.26 eV,^{18b} which would predict an IP of 7.29 eV using eq 3.

Discussion

It should be noted that the leading constant in eq 3, 11.28 eV from the least-squares analysis, is very close to the valence state ionization energy, 11.42 eV, of a sp² hybridized carbon atom.²⁰ This fact argues for the essential correctness of the empirical theory and also leads to a very simple interpretation as follows. The adiabatic IP of a π -molecular hydrocarbon is the energy to remove an electron from a carbon 2p orbital plus the resonance energy of the neutral compound minus the resonance energy of the resulting radical cation.

Acknowledgment. The financial support of the Robert A. Welch Foundation is gratefully acknowledged.

References and Notes

- (1) (a) Resonance Theory. IX. For previous papers in the series see refs 2–8. (b) On leave of absence, June 1975–August 1976.
 (2) (a) W. C. Herndon, J. Am. Chem. Soc., 95, 2404 (1973); (b) W. C. Hern-
- don and M. L. Ellzey, Jr., ibid., 96, 6631 (1974).
- (3) W. C. Herndon, Thermochim. Acta, 8, 225 (1974).
- (4) W. C. Herndon, J. Am. Chem. Soc., 96, 7605 (1974).
 (5) W. C. Herndon, Trans. N.Y. Acad. Sci., 36, 200 (1974); Int. J. Quantum (b) W. C. Herndon, *Hans. N. P. Acad. Sci.*, 30, 200 *Chem., Symp.*, No. 1, 123 (1974).
 (6) W. C. Herndon, *J. Org. Chem.*, 40, 3583 (1975).
- (7) W. C. Herndon, Tetrahedron, 29, 3 (1973); J. Chem. Educ., 51, 10 (1974).
- (8) R. Swinborn-Sheldrake, W. C. Herndon, and I. Gutman, Tetrahedron Lett., 755 (1975). (9) M. J. S. Dewar and C. de Llano, J. Am. Chem. Soc., 91, 789 (1969); M.
- J. S. Dewar and C. C. Thompson, Jr., ibid., 87, 4414 (1965); M. L. Herr, Tetrahedron, 28, 5139 (1972).
- (10) M. J. S. Dewar, J. A. Mashmall, and C. Venier, J. Am. Chem. Soc., 90, 1953 (1968); N. Bodor, M. J. S. Dewar, and S. D. Worley, *Ibid.*, **92**, 19 (1970); M. J. S. Dewar, E. Haselbach, and S. D. Worley, *Proc. R. Soc.* London, Ser. A, 315, 431 (1970).
- (11) J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys., 2, 471 (1969); ibid., 9, 214 (1972).
- (12) (a) R. Boschi and W. Schmidt, Tetrahedron Lett., 2577 (1972); (b) R.
- (12) (a) R. Boschi and W. Schmidt, *Tetrahedron Lett.*, 2577 (1972); (b) R. Boschi, E. Clar, and W. Schmidt, *J. Chem. Phys.*, **60**, 4406 (1974).
 (13) (a) E. Heilbronner, R. Gleiter, H. Hopf, V. Hornung, and A. de Meijere, *Helv. Chim. Acta*, **54**, 783 (1971); (b) F. Brogli and E. Heilbronner, *Angew. Chem., Int. Ed. Engl.*, **11**, 538 (1972); (c) F. Brogli and E. Heilbronner, *Theor. Chim. Acta*, **26**, 289 (1972); (d) P. A. Clark, F. Brogli, and E. Heilbronner, *Helv. Chem. Acta*, **55**, 1415 (1972); (e) C. Baitch, P. Bischef, and E. Heilbronner, *Elsekef*, Scottrage *J. Clarker*, *Boschi and C. Baitch*, P. Bischef, and E. Heilbronner, *Theorem. Helv. Chem. Acta*, **55**, 1415 (1972); (e) C. Baitch, P. Bischef, and E. Heilbronner, *Helv. Chem. Acta*, **55**, 1415 (1972); (c) C. Baitch, P. Bischef, and E. Heilbronner, *Melv. Chem. Acta*, **56**, 1415 (1972); (c) C. Baitch, P. Bischef, and E. Heilbronner, *Melv. Chem. Acta*, **56**, 1415 (1972); (c) C. Baitch, P. Bischef, and E. Heilbronner, *Melv. Chem. Acta*, **56**, 1415 (1972); (c) C. Baitch, P. Bischef, and E. Heilbronner, *Melv. Chem. Acta*, **56**, 1415 (1972); (c) C. Baitch, P. Bischef, and E. Heilbronner, *Melv. Chem. Acta*, **56**, 1415 (1972); (c) C. Baitch, P. Bischef, and E. Heilbronner, *Melv. Chem. Acta*, **56**, 1415 (1972); (c) C. Baitch, P. Bischef, and E. Heilbronner, *Melv. Chem. Acta*, **56**, 1415 (1972); (c) Chaitch, P. Bischef, and E. Heilbronner, *Melv. Chem. Acta*, **57**, 1415 (1972); (c) C. Baitch, P. Bischef, and E. Heilbronner, *Melv. Chem. Acta*, **57**, 1415 (1972); (c) Chaitch, P. Bischef, and E. Heilbronner, *Melv. Chem. Acta*, **57**, 1415 (1972); (c) C. Baitch, P. Bischef, and E. Heilbronner, *Melv. Chem. Acta*, **57**, 1415 (1972); (c) Chaitch, P. Bischef, and Chaitch, P. Bischef, Acta, Chaitch, P. Bischef, Acta, Chaitch, P. Bischef, Acta, Chaitch, P. Bischef, Acta, Chaitch, P. Bischef, Chaitch, P. Bischef, Acta, Chaitch, P. Bisc Bischof, and E. Heilbronner, J. Electron Spectrosc. Relat. Phenom., 1 (1972/73)
- (14) J. P. Maier and D. W. Turner, Discuss Faraday Soc., 54, 149 (1972); J. Chem. Soc., Faraday Trans. 2, 69, 196 (1973). (15) Dr. Milan Randic (personal communication) has given the interesting
- formula 2[CSC(R)-M(C==C) + CSC(R*)] for counting the radical cation structures. N(C==C) is the number of double bonds in the parent structure and CSC(R*) is the number of singly excited structures, e.g., the three Dewar structures for benzene
- (16) M. J. S. Dewar and S. D. Worley, J. Chem. Phys., 50, 654 (1969).
- (17) E. Hedaya, R. D. Miller, D. W. McNeil, P. F. D'Angelo, and P. Schissel,
- L. Heddya, A. D. Miller, D. W. McKell, P. F. D'Algelo, and P. Scrissel, J. Am. Chem. Soc., 91, 1875 (1969).
 (18) (a) C. F. Wilcox, Jr., J. P. Uetrecht, and K. K. Grohman, J. Am. Chem. Soc., 94, 2532 (1972); (b) C. F. Wilcox, Jr., J. P. Uetrecht, C. D. Grantham, and K. G. Grohman, *Ibid.*, 97, 1914 (1975).
- (19) Ph.D. Thesis of Dr. Gary Grantham, Cornell University, personal communication from Dr. Charles F. Wilcox, Jr.
 (20) H. O. Pritchard and H. A. Skinner, *Chem. Rev.*, 55, 745 (1955).
- (21) G. Levin, W. A. Goddard, Ill, and D. L. Huestis, *Chem. Phys.*, 4, 409 (1974); G. Levin and W. A. Goddard, Ill, *J. Am. Chem. Soc.*, 97, 1649 (1975). For some earlier results using a semi-empirical approach, see J. Paldus, J. Cizek, and S. Sengupta, J. Chem. Phys., 55, 2452 (1971); S. Sengupta, J. Paldus, and J. Cizek, Int. J. Quantum Chem., Symp., No. 6, 153 (1972).